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ABSTRACT 

YET ANOTHER ALGORITHM FOR PITCH TRACKING 
(YAAPT)  

Kavita Kasi 
Old Dominion University, 2002 

Director: Dr. Stephen A. Zahorian 
 

This thesis presents a pitch detection algorithm that is extremely robust for both high 

quality and telephone speech. The kernel method for this algorithm is the Normalized 

Cross Correlation (NCCF) reported by David Talkin [16]. Major innovations include: 

processing of the original acoustic signal and a nonlinearly processed version of the 

signal to partially restore very weak F0 components; intelligent peak picking to select 

multiple F0 candidates and assign merit factors; and, incorporation of highly robust pitch 

contours obtained from smoothed versions of low frequency portions of spectrograms.  

Dynamic programming is used to find the “best” pitch track among all the candidates, 

using both local and transition costs. The algorithm has been evaluated using the Keele 

pitch extraction reference database as “ground truth” for both “high quality” and 

“telephone” speech.  For both types of speech, the error rates obtained are lower than the 

lowest reported in the literature.  
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CHAPTER I  
INTRODUCTION 

 

1.1 General Introduction 

 Speech has been the principal mode of communication throughout human history. 

Both the vocal organs and our hearing mechanisms are intensely complex and 

sophisticated systems well-suited for hearing and receiving oral messages. As acoustical 

and physiological measurement techniques have evolved over the years, there has been a 

considerable increase in the understanding of the speech and the hearing systems. 

 For quite some time, a significant amount of research work has been focused on 

Automatic Speech Recognition [1]. Providing computers with the ability to speak has 

also been the objective for a substantial amount of research. A primary underlying task is 

the extraction of features from speech signals, which can be used for both recognition and 

speech synthesis applications. One such very important feature is  “fundamental 

frequency,” more commonly referred to as “pitch.” Note that in this thesis, the terms 

pitch and its primary acoustical correlate fundamental frequency are used 

interchangeably.   

 Fundamental frequency (or F0, as it shall be primarily referred to in this document) 

corresponds to the rate at which the human vocal cords vibrate.  

 Over the past thirty years, a number of F0 tracking algorithms have been 

developed and reported [2]. This raises the obvious question of why new work is still 

being carried out in this field. The complexity of F0 estimation stems from the variability 

and highly irregular nature of human speech, as will be discussed in detail later. As a 

consequence, none of the many reported algorithms have proved to be entirely 

satisfactory; hence, researchers continue to strive for improved F0 estimation algorithms.   

The research is motivated by the many applications for which a really robust pitch-
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tracking algorithm could be used.   Among these applications is the modeling of 

“prosodic” features in speech, that is, modeling of qualities such as stress, emotion and 

intonation patterns.   Such information would be very helpful in, for example, 

automatically determining questions from declarative statements.   Another big reason for 

renewed interest in F0 tracking is the many telephone applications for which speech 

processing can be very useful. 

 

1.2 Speech Production and Various Properties of Speech Signals 

 The human vocal organs are depicted in figure 1.1 to give a basic understanding of 

how speech is produced and what the mechanism of the voice source is.   The operation 

of this voice source, shown below, determines F0.  

 

   

Figure 1.1: Illustrations of the physiologic components of human speech production 

[5].  

 

 The lungs act as reservoir and an energy source. When a person speaks, air is 

pushed out from the lungs through the larynx into the vocal tract. To produce speech 
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sounds, this airflow is interrupted by the vocal cords or by a constriction of the vocal 

tract. 

 From the point of view of F0 considerations, the most important part of the human 

vocal system is the larynx, which contains the vocal cords, also known as the vocal folds. 

It is the activity of the vocal cords that determines whether speech is produced as 

“voiced” or “unvoiced” sounds. For voiced speech (all vowel sounds and parts of many 

consonants), the vocal cords modulate the airflow with rapid openings and closings.  The 

rate of vibration of the vocal cords, known as the F0, depends primarily on the mass and 

the tension of the cords.   For the case of unvoiced speech  (many consonants such as “s,”  

“sh,”  “z,” etc.), the vocal cords are positioned to allow a non-periodic turbulent flow, 

and there is no periodic component in the resultant speech.     

 In Figure 1.2, the first panel depicts the time-domain representation of the signal 

(“beet,” spoken by a male speaker). As can be seen in the figure, the voiced regions of 

speech are clearly cyclic while the unvoiced regions are much more noise-like.  The 

second panel depicts the time-frequency-intensity representation (called a “spectrogram”) 

of the same signal. Note the highly intense regions where the speech is voiced and the 

less intense regions showing the unvoiced or the background sections of the speech 

signal. The third panel illustrates what the signal looks like in the voiced regions of 

speech. Note the highly cyclic pattern of the signal. It is these highly cyclic regions of 

speech that help determine the F0. 
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           Voiced speech    

      

 

 

unvoiced/silence                                            

 

 

Highly periodic regions that depict strong voicing                        

Figure 1.2: The top panel illustrates the acoustic speech signal and the middle panel 

illustrates the spectrogram of the speech signal, while the bottom panel illustrates the 

voiced and the unvoiced portions of speech.  
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 For voiced speech, typical F0 ranges are of the order of 50-250 Hz for male 

speakers, 120-400 Hz for female speakers and around 150-450 Hz for child speakers, 

these ranges differ for different speaker conditions [6]. However, there are wide 

variations from one individual to another.  Even during the normal speech of a single 

speaker, there can be pitch variations spanning from one to four octaves. These wide 

variations, and other factors, make it very difficult to detect pitch with 100% accuracy 

with any set of parameters. 

 

 

Figure 1.3:  Illustration of adult human vocal track elaborating the mechanisms 

involved in human speech production [5].  

 

 The vocal tract is depicted in the figure 1.3.  The function of the vocal tract is to 

transform the signals from the vocal cords and other sources into intelligible sounds of 

speech.  This is achieved by modifying the shape of the vocal tract so that it produces 

acoustic resonances specific to the desired speech sound.   Thus, the relatively flat 

envelope spectrum of the voice source is modified in shape to encode speech 

information.    Unfortunately, sometimes these resonances of the vocal tract make pitch 

tracking more difficult, especially if the resonances are very prominent.   
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1.3 How does Pitch Relate to Speech Production and what is Pitch 

Tracking?  

 Broadly speaking, speech features are divided into segmental features, which are 

primarily indicators of very short speech events such as individual phonemes, and supra-

segmental features, which span a longer interval, such as a whole sentence or multiple 

sentences.  The supra-segmental features, also called prosodic features, include  “pitch,” 

“intensity” and “voice quality.”  These prosodic features help convey meaning, emphasis 

and emotions.  

 “Pitch” is the perception of overall frequency in a speech sound.   The primary 

acoustic correlate of pitch is fundamental frequency, which is directly determined by the 

vocal cord vibrations.  However, as mentioned above, typically the terms pitch and 

fundamental frequency are used interchangeably.   “Intensity” corresponds mainly to the 

amplitude of the speech signal. “Voice quality” is defined as the combination of several 

parameters including clarity, audibility and intelligibility. Pitch tracking consists of 

determining whether speech is voiced and unvoiced, at each time instant, and if voiced, 

what the F0 is for each time interval.    Usually the primary interest is the overall pitch 

track over a long interval such a whole word or sentence.  

 

1.4 The Difficulty of Pitch Tracking  

 There are a number of factors that make accurate pitch tracking a very difficult 

problem [7].   The fundamental reason is that the speech signal is not really periodic, and 

it is highly non-stationary.   That is, even over short time intervals on the order of 50 ms 

the speech signal is often changing in F0, in amplitude and in overall spectral 

characteristics.   Generally speaking, the more rapidly varying the speech signal is, the 

more difficult F0 tracking becomes since virtually all algorithms assume that speech is 

not changing over some short analysis interval.    Typically this analysis interval must be 
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long enough to contain at least a few pitch periods in order to take advantage of some 

type of averaging to determine the pitch.    In essence, the pitch-tracking problem is an 

example of the fundamental time/frequency resolution problem, extensively studied in 

signal processing.    The pitch tracking problem is further compounded by the voiced 

versus unvoiced decisions which must be made, and by some important applications 

(telephone speech) for which the fundamental is absent or very weak.    Even in normal 

speech, for some cases, the first harmonic may be much larger than the fundamental, 

which causes problems in many pitch trackers.   

 

1.5 Basic Overview of Pitch Tracking Approaches 

 Each of the usual three steps involved in most pitch estimation algorithms are 

briefly discussed in this section. 

 

1.5.1 Preprocessing 

 The first step of pre-processing is usually low-pass filtering (cutoff = 600-1000 

Hz) to remove the higher harmonics of the speech signal. Some algorithms also use a 

linear predictive inverse filter to remove vocal tract resonances.   

 Another signal processing technique often used for pre-processing is center 

clipping.  

 Center clipping is performed by setting the low amplitude sections of the 

waveform to zero, while still preserving the shape of the larger amplitude pulses. This 

operation tends to reduce the harmonic structure but preserve periodicity.  

 The operation can be described as:  
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Figure 1.4:  Illustration of how center clipping affects a typical signal.   In the first 

panel, an acoustic waveform of a vowel sound by a child speaker is depicted. The 

second panel of the figure shows the same data after center clipping. The fundamental 

frequency is more apparent in the second panel, as there are fewer non-fundamental 

components.  
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1.5.2 F0 Candidate Estimation 

 Pitch tracking algorithms can be broadly classified into the following categories: 

frequency domain based (e.g., power spectral density, cepstrum etc.); time domain based 

pitch tracking (e.g., waveform pitch period labeling, time-autocorrelation etc.); or joint 

time-frequency domain.  We briefly discuss the autocorrelation and cepstrum method in 

the remainder of this section. The auto-correlation approach is the most widely used 

method for estimating the pitch of a periodic signal. Mathematically the auto-correlation 

is given the formula: 

 

∑
−

=

+=
KN

n
knsnskAUTO

0
)()()(

                           
For   0≤ k ≤ K-1.                   (1.2) 

 

Where,   

s(n) = the signal. 

s(n + k)  =  the time lagged version of the original signal. 

   

 Thus, auto-correlation basically consists of convolving a signal with a time-lagged 

version of itself. To be useful, the auto-correlation must be computed over a wide range 

of lag values. If the speech signal is periodic then the auto-correlation function will also 

be periodic. For periodic signals, the autocorrelation function attains a maximum at 

sample lags of 0, +-P, +-2P, etc., where P is the period of the signal. 

 A major limitation of the auto-correlation function is that it may contain many 

other peaks other than those due to basic periodic components. For speech signals, the 

numerous peaks present in the auto-correlation function are due to the damped 

oscillations of the vocal tract response. It is difficult for any simple peak picking process 
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to discriminate those peaks due to periodicity from these “extraneous” peaks. The peak 

picking is more robust if a relatively large time window is used, but has the disadvantage 

that the rapid changes in pitch cannot be tracked properly. 

 As mentioned above, another method for pitch tracking technique is computation 

of the Cepstrum, followed by peak picking over a suitable range. The Cepstrum is 

defined as the inverse Fourier Transform of the short time log magnitude spectrum. 

( )( )( )22log)( txFFc =τ  

 

( )( )( )21 log)( txFFc −=τ               (1.3) 

Where, 

   X(t) =  the input signal under consideration. 

          

 For voiced speech, the Cepstrum tends to have local maxima at times, kT, 

corresponding to integer multiples of the glottal periods. The “log” in the Cepstrum 

equation tends to flatten the harmonic peaks in the spectrum and thus leads to more 

distinct peaks in the Cepstrum function, as compared to the peaks in the autocorrelation 

function.   

 The interval of speech over which the spectrum and hence the Cepstrum has to be 

computed introduces a number of flaws in the F0 candidate estimation. It requires a 

relatively large time window over which the Cepstrum must be computed in order to 

cover the F0 ranges of human speech. Thus, as for autocorrelation methods, in regions 

where there are rapid changes in F0, the method does not perform well. 

 Some of the shortcomings in the auto-correlation method are overcome using the 

cross-correlation function.  
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 The Normalized Cross Correlation function is very similar to the auto-correlation 

function, but is better able to follow the rapid changes in pitch and amplitude. The major 

disadvantage is an increase in the computational complexity. 

 

1.5.3 Post-Processing 

 There are a number of gross and fine errors that result in erroneous tracking of the 

pitch. The most common gross errors are pitch doubling and pitch halving. The pitch 

doubling occurs whenever the first harmonic is mistaken for F0.  Pitch halving occurs 

when two pitch cycles are mistaken for a single cycle.  This pitch halving occurs in 

autocorrelation methods when the peak at a time lag corresponding to 2 F0 is large than 

the peak at a lag corresponding to F0.  The other main type of gross error is a mistake in 

the voicing decision—either voiced speech is classified as unvoiced or unvoiced speech 

is classified as voiced. Post processing is otherwise called as gross error reduction as 

well. 

 One traditional post-processing step, intended to remove some of the gross errors 

in F0 candidates, is median smoothing of the pitch contour obtained from a succession of 

frame-based measurements.     

 Median smoothing does introduce some unwanted overall smoothing, although it 

has been found to be more effective than a linear low-pass filter.   Small deviation errors 

are less of a problem. 

 

1.6   Objective and an Overview of the Thesis 

 The basic objective of this thesis is to develop yet another pitch tracking 

algorithm, with desirable properties as follows: 
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1. To obtain higher accuracy, for both studio quality and telephone speech, than for any 

pitch tracker previously reported in the literature with a single set of parameters for all 

purposes. 

2. The pitch tracking should be developed as a series of software routines, which can 

easily be integrated with other speech processing applications. 

3. The tracking should be based on multiple sources of information, from both the time 

and frequency domain. 

Note that the portions of this thesis work have been presented as a conference paper to 

the International Conference For Acoustic Speech and Signal Processing (ICASSP 2002) 

[8]. 
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CHAPTER II  
BACKGROUND 

 

2.1 General Information 

 Various pitch detection algorithms have been developed in the past [9].  While 

some have very high accuracy for regions that the algorithm identifies as voiced, the 

overall error rate is still high since many voicing decision errors are usually made.  The 

performance degrades even more as the signal condition deteriorates, such as for the very 

important case of telephone speech.  Hence, there does not yet appear to be a single pitch 

determination algorithm that operates reliably and accurately for all applications.     

Nevertheless, new work can benefit by first examining the existing algorithms.  

Therefore, this chapter is devoted to a brief overview of some of the existing methods for 

pitch tracking. 

 

2.2 Survey Of Existing Pitch Tracking Algorithms 

 In the remainder of this chapter, five papers in the area of F0 estimation are 

summarized. The first study is itself a survey of three different F0 estimation methods, 

and the study compares the pros and cons of each method.  The second study discusses an 

error correction technique used for overall improvement in F0 tracking performance. The 

third study discusses a new F0 estimation algorithm using a time-pitch energy 

distribution based on predictable energy to improve the normalized cross correlation 

function and hence improve the accuracy of F0 estimation.  This paper also presents a 

number of modifications that can be applied to the core method, which can also be 

applied to other methods.   Once such modification is the use of a variable frame length. 

The fourth study discusses a new F0 estimation algorithm for telephone speech.  The fifth 

study uses the F0 estimation algorithm based on the algorithm from paper four. This 
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study has been mentioned to emphasize the potential use of prosodic features for speech 

recognition, in this case a tonal language. 

 

2.2.1 Comparison Study 

 Eric Mousset, William A. Ainsworth and Jose A. R. Fonollosa in “A comparison 

of several recent methods of fundamental frequency and voicing decision estimation” 

[10] compare a number of existing methods for F0 tracking, including time domain, 

frequency domain and joint time-frequency domain methods. The conclusion of the work 

is that no one algorithm out performs all the others, with respect to either global or 

individual criteria. The authors present a performance evaluation of a SIFT based 

algorithm, a Frobenius norm based method and two bilinear time-frequency 

representation based methods.  Of these last two methods, one uses the Born Jordan 

Kernel and the other uses the cone kernel method.   All the methods are compared using 

databases that had been recorded and labeled for the purpose of comparing pitch tracking 

algorithms. 

 The author claims that among the above mentioned algorithms, the simplified 

inverse filter-tracking (SIFT) algorithm is best suited for inter-speaker variability. Hence, 

in this section we only summarize the F0 estimation steps for the SIFT algorithm. 

 The SIFT algorithm is considered a time domain algorithm. The signal is first low 

pass filtered and pre-emphasized to improve the accuracy of the LPC (Linear Predictive 

Coding) inverse filter. The LPC coefficients are then used to inverse filter the signal to 

remove the effects of the vocal tract resonances.   In order to increase the amplitude of 

the signal prior to inverse filtering, the signal for the voiced frames is weighted by the 

energy ratio between the original and the pre-emphasised signal.  This signal is then 

again low-pass filtered and clamped to remove any DC components. The autocorrelation 

is then computed. To account for the discontinuity of the F0 space, the auto-correlation is 

interpolated and the F0 candidates are determined by simple peak picking.  The 

autocorrelation is first used to determine whether each frame is voiced or unvoiced.  For 
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each voiced frame, each autocorrelation peak is marked and then validated or rejected 

based on the relevance of the time interval between consecutive markers.  It is this cluster 

of markers that constitute the pitch track. 

 

2.2.2 Average Magnitude Difference Function (AMDF) Approach 

 A probabilistic error correction technique is used in conjunction with an averaged 

magnitude difference function (AMDF), in the pitch detection method discussed in 

Goangshiuan S. Ying, Leah H. Jamieson and Carl D. Michell [11].  

 The signal is first pre-processed to remove the effects of intensity variations and 

background noise by low-pass filtering the signal and then center clipping it for each 

frame. The average magnitude difference function (AMDF) is a time domain based pitch 

estimation method. It is said to have advantages of relatively low computational cost and 

easy implementation. The function is computed as the normalized sum of the absolute 

difference between the signal and its time-lagged version using: 

 

( ) ( ) ( )

..max
,1

,1
1

framepergeneratedvaluesAMDFofnumberM
Mj

where

jixix
N

jAMDF
N

i
nnn

=
≤≤

+−= ∑
=

              (2.1) 

 

 The AMDF is used for the initial pass of peak picking.  In this method, multiple 

candidates per frame are found.  This gives rise to local maxima for each frame as well as 

global maxima for the whole utterance.   The pitch track is then found by considering 

several constraints such as the highest ratio of the local maximum to the global maximum 

among others.  
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 Since these techniques can give rise to gross errors and voicing decision errors, a 

global error correction technique was formulated to work in conjunction with the main 

routine. The claim has been that this method provides a means to correct errors in pitch 

period estimation and actually provides for fast and accurate pitch detection. In the 

process, first an estimate of the distribution of initial pitch estimates for the entire 

utterance is obtained from a set of initial local estimates. This distribution is then 

approximated as a normal distribution.  The pitch estimates for each frame are then 

weighed by the normal distribution values. The pitch estimate with the highest “weight” 

(computed a the product of the original AMDF peak values and the normal distribution) 

is then considered to be the new correct pitch estimate for that frame. Thus, the estimates 

located around the mean of the distribution are more likely to be chosen as final 

candidates rather than those far away from the mean of the distribution. 

 

2.2.3 Maximum Posteriori Pitch Tracking 

 Maximum posteriori pitch tracking algorithm [12] by James Droppo and Alex 

Acero creates a time-pitch energy distribution based on predictable energy to improve the 

normalized cross correlation function used in prediction of F0 estimates for an utterance.   

The first step in this method is to band-pass filter the signal to remove any low-frequency 

noise and to diminish the energy of the unvoiced frames, thus strengthening the voicing 

decisions made. The algorithm uses the assumption that for a periodic signal, x(n), a 

sample of the signal can be predicted from a series samples in the past.  

 The prediction of the pitch periods for each frame is computed using the modified 

normalized cross correlation function given by:  
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 After pitch candidates are computed for each frame, the energy distribution 

function is formed using the concept of predicting the energy of the present frame using 

the previous pitch periods.  Whenever spectral discontinuities occur in the signal, the 

forward and backward prediction energies are used to predict the energy of the present 

frame.  The sub-harmonics are suppressed using a weighting factor less than one.    This 

is done since if the signal is periodic with a period of “P” around the time “T,” then it is 

likely that peaks of comparable magnitude can be found at sub-harmonics of “P.”   Since 

such peaks can result in erroneous tracking, the weighting just mentioned is used.  The 

final decision for the pitch estimate is based on two passes of dynamic programming. The 

first pass is used to select the best candidate for each frame; the second pass combines a 

voicing decision module to determine whether or not a frame is voiced or unvoiced and 

then determines the final pitch track estimate. 

 This performance of the MAP algorithm has been tested and compared to the 

performance of a commercially available pitch tracker (Xwaves) and maximum 

likelihood pitch estimation (Maximum likelihood) algorithm, on a database of 200 

sentences each from one female (Melanie) and one male (Mark) speaker. The “ground 

truth” was derived as the pitch estimates of the electro-glottogram (EGG) signal. There 

are two types of errors reported, voicing decision errors (Err_1) and the standard 

deviation of relative pitch errors (Err_2). The table that follows summarizes the errors for 

the three pitch estimators and shows the improvement in performance of the MAP 

algorithm compared to the other pitch estimators.  All the errors are percentages unless 

otherwise mentioned. 
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          Err_1            Err_2 

Pitch tracker Mark Melanie 

 

Pitch tracker Mark Melanie 

Maximum 

likelihood 

 

0.46 1.08 Maximum 

likelihood 

 

13.2 20.8 

Xwaves 0.34 0.74 Xwaves 8.0 10.7 

MAP   pitch 0.23 0.27 MAP pitch 7.2 9.6 

Table 2.1: Error rates (percent) indicating relative comparison of Maximum likelihood, 

Xwaves and MAP pitch trackers. 

 

2.2.4 Robust Pitch Tracking for Telephone Speech using Frequency Domain 

Methods 

 The focus of this paper [13] is pitch tracking for telephone speech, due to the many 

applications where ASR is uniquely important over the telephone.  Since the fundamental 

frequency is often weak or missing for telephone speech, and the signal is distorted and 

noisy and overall degraded in quality, pitch detection for telephone speech is a difficult 

task [13,14].    It is important that pitch routines overcome the difficulties associated with 

these signal degradations and perform well even in a telephone environment.     

 In this paper the algorithm (Discrete Logarithmic Fourier Transform, DLFT), a 

frequency domain based F0 estimation method uses a logarithmically sampled spectral 

representation of speech signals.  If the signal has periodic peaks spaced at period P, then, 

on the log scale, the harmonic peaks appear at log P, log P + log 2, log P + log 3 etc.  One 
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can obtain the F0 estimate by summing the spectral energy spaced by log 2, log 3 etc., 

which is essentially the same as correlating the spectrum with a pulse template that 

includes the number of harmonics considered. To estimate ∆  log f0 and provide 

constraints for ∆  log f0 and logf0, which are used for guiding the final pitch track, two 

sets of correlation functions are used.   One is the  “template frame” and the other is the  

“cross frame.”    

 A template-frame correlation function is defined as the correlation of the weighted 

DLFT spectrum of a Hamming windowed impulse train (the template) and the µ law 

converted DLFT spectrum. This function is then normalized by the signal energy. The 

correlation maximum will now correspond to the difference of logf0 between the signal 

and the template.   A cross-frame correlation function is defined as the normalized 

correlation of the adjacent DLFT signal frames. The maximum of this correlation 

function now gives a robust estimation of the logf0 difference between voiced frames. 

The two constraints defined by the “template frame” and “cross frame” correlation 

functions are used to define the search constraints for dynamic programming for 

estimating the final pitch track. 

 The performance comparison of the DLFT algorithm with a commercially 

available pitch tracker (Xwaves) has been reported. Each of the pitch trackers were tested 

on a speech database (studio and telephone quality speech) comprised of five female and 

five male speakers each reading a story of approximately 35 seconds long. The “ground 

truth” was a manually checked pitch track derived as the pitch estimates of the 

laryngograph signal. The study reports “gross” errors, and the standard deviation and the 

mean of the absolute errors. The gross error is defined as the percentage (usually 10-

20%) by which the computed pitch track differs from the “ground truth.” The mean and 

the standard deviation of the computed pitch track from the “ground truth” are calculated 

for the absolute value of deviation of the computed estimate from the “ground truth” 

estimate. 
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 The table below shows the numerical comparison of both the DLFT and the 

Xwaves trackers for both the studio and the telephone quality speech. All the errors 

reported are percentages unless otherwise mentioned. 

 

           Xwaves:v 

 

       Xwaves:UV Overall  

 

CONFIGURATION Ger Mean(Hz) Std.(Hz) v->uv 

 

Ger  

Xwaves 1.74 3.81 15.52 6.63 ------ 8.37  

Studio DLFT 3.24 4.61 15.58 ---- 1.01 4.25 

Xwaves 2.56 6.12 25.10 20.84 ---- 23.41 Telephone 

DLFT 2.10 4.49 14.35 ---- 2.24 4.34 

TABLE 2.2: Error table for the performance comparison of DLFT and Xwaves. 

 

2.2.5 Application of Pitch Tracking for Prosodic Modeling to Improve ASR for 

Telephone Speech 

 Chao Wang and Stephanie Seneff, in their paper “A study of tones and tempo in 

continuous mandarin digit strings and their application in telephone quality speech 

recognition” [15], discuss the use the F0 tracking algorithm described in the above 

paragraph [13].  They make use of parameters based on orthonormal decomposition of 

the F0 contour for tone recognition in Mandarin speech. The performance evaluation 

clearly suggests the potential use of prosodic features for improved speech recognition. 
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F0 tracking is thus especially important for ASR in tonal languages as Mandarin speech, 

for which pitch patterns are phonemically important.   

 

2.3 Summary 

 This chapter presented a brief overview of the existing algorithms for F0 

estimation. The final study was to emphasize the use of a robust pitch-tracking algorithm 

for speech recognition purposes. 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III  
THE ALGORITHM 
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 This chapter presents the complete algorithm developed in this thesis for pitch 

tracking of speech. This chapter is divided into a number of sub-sections. Each sub-

section described deals with a single signal-processing step. The sections have been 

arranged according to the order in which the various steps are implemented in the code. 

This order of processing is generally the same as that previously reported for pitch 

tracking, such as for the algorithms mentioned in Chapter II. 

 The algorithms described in this Chapter have been implemented and tested using 

MATLAB ver5.3.  For the convenience of the reader, who may wish to compare 

algorithm descriptions with the actual code, the code has been provided in Appendix A.  

Key variable names contained in the code are placed in parentheses   when these 

variables are referred to in the main body of this chapter.  Note that the code in the 

appendix also contains numerous comments, and explanations about each variable, so 

that the code can be more easily understood, and re-used as part of other speech signal 

processing applications. At the end of this chapter, a brief overview of the code is given, 

including a description of which portions of the code contain the various signal 

processing steps mentioned in this chapter. 

 

3.1 General Overview Of Pitch Estimation Steps 

 Our algorithm consists of six main steps, as listed below: 

3.1.1.Pre-processing 

3.1.2. F0 candidate estimation 

3.1.3. Candidate refinement based on spectral information (both local and global) 

3.1.4. Candidate modification based on plausibility and continuity constraints 

3.1.5. Final path determination using dynamic programming 

3.1.6. Determination of pitch period markers for voiced regions of the signal. 
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 Note that most pitch algorithms in the literature only mention 3 main processing 

steps, pre-processing, frame-based pitch estimation, and post-processing.    Step 1 above 

is pre-processing, step 2 is analogous to frame-based pitch estimation, steps 3,4, and 5 are 

post processing, and step 6 is a final algorithm designed to estimate even finer pitch 

details, after the overall pitch track has been determined.   The signal processing used to 

implement each of these steps is explained in detail in the following paragraphs.  

 

3.1.1 Pre-processing          

 The first step of preprocessing is to create two versions of the signal, the original 

and absolute value of the signal. The motivation for the nonlinear operation (absolute 

value) is illustrated in figure 3.1 and in the explanation and example that follow figure 

3.1.  

 In figure 3.1 for a certain sentence, the low-frequency portion of the spectrogram 

of the studio quality version of the signal is shown in the top panel, the same portion of 

the spectrogram is shown in the middle panel for the telephone version of the same 

sentence, and the bottom panel is the spectrogram of the telephone version of the signal, 

but after the absolute value processing.    Computed pitch tracks are overlaid on each 

spectrogram, using the processing methods described in more detail later in this chapter.  

This figure clearly illustrates that the F0 track computed from the absolute value 

telephone signal is quite similar to the F0 track of the studio version of the sentence, 

whereas the F0 track computed directly from the telephone version of the sentence is 

mainly in error, apparently due to the missing fundamental. Similar effects were noted for 

many other sample telephone signals.  Even for the case of some studio quality signals, 

the absolute value processing appeared to make the fundamental more prominent.   The 

general strategy adopted in the remaining steps of processing was to completely process 

both signals (i.e. the original and the absolute value), computing multiple F0 candidates 

from each one, and then ultimately determining a “single” best track. 
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Weak fundamental or missing fundamental       Strong fundamental      

 

Figure 3.1: Illustration of the effects of nonlinear processing of the speech signal on 

the F0 of the spectrograms of the signals, as explained in the text.    In the top panel 

(studio quality), the fundamental is clearly apparent, but appears to be missing in the 

telephone version (middle panel).    The fundamental reappears in the absolute value 

of the telephone version (bottom panel).    

 To more thoroughly illustrate the benefits of using the absolute value nonlinear 

operation to partially restore the “missing fundamental” a straightforward MATLAB 

simulation was performed.   In particular, a 100 Hz fundamental pulse train was created 

using a sampling rate of 5000 samples per second.    These values correspond to a period 



 25

of 50 samples.  The spectra of various versions of this pulse train, as listed below, were 

examined and plotted over a frequency range of 0 to 500 Hz.    

 The cases considered were: 

 1.  Original pulse train.  

 2.  High pass filtered pulse train (100 point FIR filter   with cutoff at 200 Hz.).  

 3.  Pulse train after high pass filtering, and absolute value. 

 Additionally, each of the conditions a, b, c listed were repeated using duty cycles 

of 10% (5 point pulse), 30% (15 point pulse), 40% (20 point pulse), and 50% (25 point 

pulse).     Spectral plots are given in figure 3.2 (original signal), figure 3.3 (highpass 

filtered signal), and figure 3.4 (highpass filtered and the absolute value signal).    In all 

cases a 512-point FFT was used to compute the spectra of a 512-point signal, using a 

Hamming window.    The plots clearly indicate that the highpass filter removes the 

fundamental component at 100 Hz, but that the absolute value operation restores this 

fundamental for all cases except the 50% duty cycle square wave.    
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Figure 3.2:  The five prominent peaks in the range (0-500 Hz) for a pulse train with 

fundamental of 100 Hz, for four duty cycles as noted.   The spectra have peaks at all 

harmonics, except for the 50% duty cycle case (square wave), which has only odd 

indexed harmonics.    
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Figure 3.3:  The spectra of the highpass filtered pulse trains, illustrating that the 

fundamental frequency component at 100 Hz has been nearly eliminated. 
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Figure 3.4: Spectra of the absolute value of highpass filtered pulse trains, clearly 

showing that the “missing” fundamental of 100 Hz has been restored for all cases, 

except for the 50% duty cycle pulse train.   

 

 Thus this Matlab simulation with a variable duty cycle pulse train  (simplified 

model of a speech signal) clearly shows that the nonlinear absolute value operation can 

be used to restore a missing fundamental component.   The results with real speech 

signals, especially when computed pitch tracks were overlaid on the low-frequency 

portions of spectrograms, also clearly illustrated that the nonlinear processing was 

beneficial for pitch tracking for the case of weak or missing fundamental frequency 

components.   
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 The next processing step is band-pass filtering of both the original and absolute 

value signals, using FIR filters for each case. The filter cutoff frequencies and orders 

were determined empirically by inspection of many signals in time and frequency, and 

also by overall pitch tracking accuracy.  In the final version of the tracking algorithm, 

filter orders and pass band edge frequencies are parameters which can be user specified 

in a setup file, and actual values to use depend on the error measure which is to be 

minimized, as discussed in chapter IV.  Typically, 150-point filters with passbands of 

approximately 100Hz to 900 Hz are used for each signal.  Each of these band pass 

filtered signal is then decimated by a factor of 2, provided that the original sampling 

frequency is 11 kHz or higher. If the sampling rate is less than 11 kHz then the signal is 

not decimated. Each of the signals is then broken into overlapping frames (typically 35-

55 ms in duration, with a frame advance of 10 ms), thus forming the signals for frame 

based processing. Each of the signals is then  (optionally) center clipped on a frame basis, 

using a center-clipping ratio of up to 0.25.  That is, for each frame, the maximum 

absolute value of the signal is determined, and all signal values with absolute values less 

than the center clipping ratio times this maximum are set to zero.   As described 

previously in chapter I, center clipping reduces the harmonic structure of the speech 

signals while still preserving the fundamental. At this point, the frame level signal is 

ready for initial F0 candidate estimation.  

 

 

3.1.2 F0 Candidate Estimation  

 The two preprocessed versions of the signal, as mentioned above, are now 

processed frame by frame.  The fundamental assumption is that the speech signal is 

stationary over a frame interval, and thus the voicing properties are well defined and 

constant for the duration of each frame considered.   However, as mentioned in chapter I, 

one of the difficulties of pitch tracking is that this assumption is not entirely valid.   
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 The basic signal processing used for each frame is an autocorrelation-type 

processing followed by peak picking.   That is, the correlation signal will have a peak of 

large magnitude at a lag corresponding to the pitch period.  If the magnitude of the 

largest peak is above some threshold (about 0.6) then the frame of speech is usually 

considered as voiced. 

 A modification to the basic autocorrelation [16], and the one used in this work, is 

the normalized cross correlation function (NCCF), [17], defined as follows: 

Given a frame of speech sampled, s(n), 0 ≤  n ≤ N-1  

 Then: 

ke0e

∑
KN

0=n
)k+n(s)n(s

=)k(NCCF          (3.1) 

 Where              , 0 ≤ k ≤ K-1              ∑
KN+k=n

k=n
)n(2s=ke

    

As reported in [17], NCCF is better suited for pitch detection than the “standard” 

autocorrelation function, more commonly used in pitch tracking algorithms [2].   As 

compared to the normal autocorrelation, the peaks in the NCCF are more prominent and 

less affected by the rapid variations in the signal amplitude.   The advantage of the 

NCCF over the autocorrelation in terms of peak definition is illustrated in figure 3.5.  
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Figure 3.5: Illustration of the autocorrelation and NCCF signals for a typical 

voiced frame of speech. Note the well-defined peaks in the NCCF signal in the 

second panel as compared to the peaks defined in the AUTO_CORR signal in the 

third panel. 

 

 Despite the relative robustness of the NCCF for pitch determination, it is still possible 

that the largest peak in the NCCF will not be at the “correct” lag, or that the magnitude of 

the largest peak is not a reliable indicator of whether the speech segment is voiced or 

unvoiced.   That is, in the basic method for pitch tracking, it is the magnitude of the 

largest peak that determines whether or not a frame of speech is voiced.  If the frame of 

speech is classed as voiced, then the lag corresponding to the highest peak is considered 
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to be the pitch period.  Unfortunately, this basic method is prone to problems resulting in 

a number of errors.  For example, due to the harmonic structure of speech, as explained 

before, the largest peak may occur at half or double the “correct” lag value, or sometimes 

may even occur at a slightly different correct value.  

In our approach, we assume that for voiced speech there will not only be a peak at a 

lag corresponding to the F0 period, but also there may be additional peaks of even higher 

magnitude at different lags. Based on this assumption, instead of identifying only the 

single largest peak per frame the algorithm searches for multiple peaks (F0 candidates) 

per frame for each of the two signals using a multi-pass search algorithm, as described 

below. 

 

Intelligent peak picking 

 In the process of developing the algorithm described in this thesis, a multi-pass 

algorithm was developed for searching for multiple candidates per frame.  This peak 

picking method, which we call  “intelligent peak picking,” is described in detail below.  

Despite the ability of the intelligent peak picking to generally identify the “correct” 

peaks, some errors remain, most of which are eliminated by the spectrographic methods 

described below.  On final experimental testing of the pitch tracking algorithm, it was 

determined that not all the steps in the intelligent peak picking result in more accuracy of 

tracking, and therefore the final algorithm allows these additional steps to be optionally 

used as controlled by parameters in a setup file.    

 In the first pass of the search algorithm, all local peaks in the NCCF signal (over 

lag values in the range of the maximum to the minimum F0 specified) are found. A point 

in the correlation is considered to be a peak, if it is larger than L points (typically L=2) on 

either side of the peak. Those peaks that have a magnitude greater than a specified 

threshold  (Merit_thresh1, typically .4) are further processed. Thus these large local 

peaks are considered to be the potential F0 indicators and saved for further consideration. 

Additionally, for those cases where there is a very large peak (i.e., a peak whose 
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magnitude is greater than Merit_thresh3, or typically 0.96), then all other peaks in the 

same frame are eliminated or ignored.  Note that the searching is done from a lower lag 

to a higher lag, so that higher F0 values are first found.    Thus this refinement is used to 

reduce the likelihood of pitch halving problems. Such problems generally arise for 

strongly voiced, highly periodic speech signals, for which the NCCF  (or in general any 

correlation) function usually has strong peaks corresponding to both F0 (low lag) and 

F0/2 (high lag). 

 In the second pass of the search algorithm, all the peaks remaining from the first 

pass are tested to determine if there are any “close” larger peaks. “Close” is defined as a 

range of lag values of 2 milliseconds on either side of the peak in question. This step is 

used to eliminate peaks that are close to even larger peaks, while still allowing the same 

size peaks to be considered for further processing if they are not close to other peaks.  

 In the third pass of the search algorithm, each peak is tested to determine if there is 

also a peak at a lag value corresponding to twice the lag value. When such cases are 

found, the amplitude (or “merit”) of the peaks at the shorter lag values are increased by a 

factor (Merit_boost, typically 0.10) since the presence of the peaks at higher lag values 

are additional evidence that the peaks at the lower lag values correspond to the correct 

pitch period of the signal. 

 The peaks still retained, with their associated merit values, are the F0 candidates 

considered for the final F0 track.  In those cases where no peaks are found which satisfy 

the constraints just mentioned, the frame is considered to be unvoiced.   Despite the 

relative robustness of the NCCF and the intelligent peak picking mentioned above, 

considerable experimental testing indicated that some errors still occurred in a final F0 

track obtained from this information alone. Errors were most likely to occur for telephone 

speech or weakly voiced sections of studio quality speech. Therefore, additional 

information and processing, as described in the next two sections, was used to improve 

the overall robustness of the algorithm. 
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3.1.3 Candidate Refinement Based on Spectral Information 

 For all signals examined, the patterns in the spectrogram appeared to clearly show 

voiced versus unvoiced regions of speech, and clearly showed the approximate F0 

contour.  

 In this section we describe the empirically determined methods used to compute an 

additional measure useful for making voiced/unvoiced decisions [18], and methods used 

to determine a very smooth pitch contour with extremely few gross errors. This very 

smooth spectrographically based pitch contour is then used to help select the “correct” 

NCCF based candidates.  Spectrograms were computed for both the original and 

nonlinearly processed versions of the signal, as mentioned above.   

 The normalized low-frequency energy ratio (NLFER) is the additional measure 

computed to help indicate voiced versus unvoiced regions. The sum of absolute values of 

spectral samples (the average energy per frame) over the low frequency regions is taken, 

and then normalized by dividing by the average low frequency energy per frame over the 

utterance.   

 In equation form NLFER is given by:  

indexframe=jand
ectrogram,spofregions

frequencylowofmagnitudelog=j)x(i,
indexfrequency=iframes,of#total=N

where

∑
i
∑
j

j)x(i,
N
1

∑
i

j)x(i,
=NFLER

                 (3.2) 

 In general, NLFER is high for voiced regions, and low for unvoiced regions, with 

a threshold value  (Threshold1) of approximately 0.50 representing a good boundary 

point between the two regions. Note, however, that final voiced/unvoiced decisions did 

not use such a hard threshold. The smooth but robust pitch track is obtained using the 

following steps: 
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 1.The low frequency portion of the spectrogram is smoothed using a mask 

approximately 60 Hz wide in frequency and 3 frames in time.    

 2. Simple peak picking is used to determine the first peak in the search range 

(F0_min: F0_max).   If no peak is found, the frame is assumed to be unvoiced.  

 3. The track found from step 2 is median smoothed with a 3-point median filter.  

 4. An estimate of the average F0, and standard deviation of F0, is computed using 

the middle third (voiced frames are sorted in order of frequency) of the voiced frames 

from step 3. 

 5. All voiced frames in the estimate from step 3, and all those frames that differ 

significantly from the average F0, are replaced by the average F0 value. 

 6. The track from step 5 is again “median smoothed” with a 5-point median filter.  

 7. Simple heuristics are used to combine the two spectral F0 tracks to determine an 

overall smooth track.   For example, if the average F0 of one track is significantly lower 

than the average F0 from the other track, the track with the lower F0 is used. 

 This spectrogram-based F0 track is then used to determine the validity of the F0 

candidates from the NCCF and peak picking. For voiced frames in the speech, the F0 

candidates from the NCCF are tested for “closeness” to the corresponding spectral F0 

point.  For candidates less than 1.5 F0_min away from the spectral F0 value, the merit is 

increased by a factor of 1.25, whereas peaks far away from the spectral F0 are reduced in 

merit according to distance.   Candidates which are farther away than 1.5 * F0_min from 

the spectral F0 track are eliminated from further consideration.   

 

3.1.4 Candidate Modification Based on Plausibility and Continuity Constraints 

 The end result of the processing steps, mentioned above are the F0 candidate 

matrix, a merit matrix consisting of the amplitudes of the NCCF peaks for each of the F0    
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candidates, an NLFER curve (from the original signal), and the spectrographic F0 track, 

as explained in the last section. These data are used to obtain local and transition cost 

matrices, from which the lowest cost pitch track through all available candidates can be 

found using dynamic programming. Several processing steps, as outlined below, are used 

to compute the two cost matrices.  

 The main idea is to use the sources of information mentioned in the preceding 

paragraph so that (1 – local cost) is a rough measure of the correctness of each candidate 

based on the local (i.e., individual frame) information, and transition costs reflect the 

notion that F0 should not change too rapidly within a voiced region.    Thus, to a first 

approximation, the merits mentioned above are the primary factors, which determine 

local costs, and   frequency differences between successive (in time) pitch candidates are 

the main factors, which determine transition costs.    The proper assignment of costs is 

made considerably more difficult by the fact that the speech stream typically contains 

voiced and unvoiced regions, and it is generally unknown apriori which part of the 

speech is voiced and which is unvoiced.    Thus, for example, the transition between an 

F0 value of 150Hz to 0 Hz (unvoiced) should be assigned a low transition cost if the 0 Hz 

candidate frame is really unvoiced, but should be assigned a high transition cost if the 0 

Hz candidate frame is really voiced.   Before costs are computed from the candidate and 

merit matrices, the following steps are used to modify these matrices, with the goals of 

improving the cost computations. 

 First, the frames are pre-classified according to the NFLER as either definitely 

unvoiced (region 1, NLFER <= .5) or probably voiced (region 2, NFLER > .5). Thus, for 

the definitely unvoiced region (region 1), all F0 candidates are set to 0, and the associated 

merit is set to 0.99.  For region 2, which could be either voiced or unvoiced, every frame 

is assigned at least one viable pitch estimate, and a single unvoiced candidate, and merits 

for both voiced and unvoiced candidates are assigned to roughly approximate 

probabilities of “correctness” for each candidate.  The majority of frames for region 2 

already have at least one voiced candidate remaining from the NCCF/peak peaking 

candidate modification steps mentioned above.    The merits of these candidates, already 

on a 0 to 1 scale with highest merit values more likely to be the correct candidates, are 
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left unchanged.    Additionally, for each frame in region 2, the spectral F0 is also 

included as a candidate, with a merit set at a midpoint (Merit_pivot, typically = 0. 55).    

The merit of the unvoiced candidate is set equal to [1 – (merit of best voiced candidate)].   

Thus, frames in region 2 that have strongly voiced candidates (i.e., candidates with merit 

values close to 1.0), the merit for the unvoiced candidate will be close to 0.0.    However, 

for frames in region 2 that do not have strongly voiced candidates  (i.e., highest merit 

values for voiced candidates are not much larger than .5), the unvoiced candidate will 

have a higher merit value. 

Local costs 

 After all of the merits are assigned, as mentioned above, the local cost is computed 

as:  

merit.-1  local =                                      (3.3) 

, using a single matrix operation in MATLAB. 

 

Transition costs 

 The transition costs are computed according to the following algorithm. Note that 

“i” is the present frame index in these equations: 

 1. For each pair of successive voiced candidates (i.e., non zero F0 candidates) 

2min)_0(
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∝       (3.4) 

 

 2. For each pair of successive candidates, only one of which is voiced (i.e., for 

voiced to unvoiced transition options), 
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)_()(cos frameunvoicedNFLERittransition ∝       (3.5) 

 3. For each pair of successive candidates, both of which are unvoiced, (i.e., for the 

unvoiced to the unvoiced decision making), 

)1(*)(∝)(cos iNFLERiNFLERittransition      (3.6)  

 The various proportionality constants mentioned above, plus one additional 

constant used to adjust the overall ratio of local to dynamic costs, were empirically 

determined based on an inspection of several hundred sample recordings, and 

minimization of various error measures, as discussed in chapter 4. These factors are 

included as parameters in the setup file for running the pitch tracker.   Typical values are:  

1. k1 = 17.0, as proportionality constant for  successive voiced frames. 

2. k2 =  .9,  as proportionality constant for unvoiced to voiced transitions. 

3. k3 = 1.5,  as proportionality constant for voiced to unvoiced transitions.  

4. k4 = 0.1, as proportionality constant for  successive unvoiced frames. 

 5.   k5 = 1.0,  as  proportionality constant to weight transition costs relative to local 

costs. 

 

3.1.5   Final tracking using dynamic programming   

 The four panels in figure 3.6 illustrate the overall algorithm.  The panels illustrate 

the steps involving the use of the NFLER; the modifications of the possible F0 candidate 

estimates based on plausibility and continuity constraints and finally depict the final pitch 

tracking based on the F0 candidates.  
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Figure 3.6:  Illustration of the overall pitch-tracking algorithm. 

 

3.1.6 Determination of Pitch Period Markers for Voiced Regions of the Speech 

Signals 

 One possible use of a robust pitch tracking routine is to determine and analyze the 

fine details of the pitch track.  One particular application is an examination of pitch jitter, 

or small variations in the pitch period from cycle to cycle.  Since most pitch trackers, 

including the one described in this thesis, use considerable averaging (such as that 

implicit in correlation calculations), the fine details of the pitch are eliminated.  However, 
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these details can be recovered if the computed pitch track is used in conjunction with an 

acoustic signal to locate the "start" points of each glottal (pitch) cycle.  In this section, a 

technique to locate these start points is summarized.  

 The basic approach is to first compute the linear predictive residual signal using a 

12th order LP inverse filter.   This LP residual, for which the beginning of each pitch 

cycles is indicated with a large peak, is then used to locate the endpoints of each pitch 

period via peak picking.    The peak picking is done on a frame-by-frame basis, for each 

frame indicated as voiced by the tracker.    The first step is in peak picking is to locate the 

largest overall peak near the center of the frame, using the same procedure as described 

above in the first step of intelligent peak picking.   From this center peak, locations of 

additional peaks on either side of the center peak were found, with the constraint that the 

peaks be located approximately one pitch period apart (using the pitch values found from 

the tracking).  

 In the following figures, an original speech signal, the LP residual signal, and the 

resultant pitch markers, after modulation by the energy of the speech signal are 

illustrated. Although this pitch-marking algorithm still needs additional refinements 

(since errors do occur), this brief description is included as a starting point for future 

work. 
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Figure 3.7:  The first panel shows the acoustic signal, the second shows the LPC 

residual signal and the third panel shows the identified locations of the pitch period 

markers in the LPC residual. 

 

 All the algorithms mentioned in this paper were developed as a set of MATLAB 

functions, designed for easy integration with other software.   Key routines include one 

for computing multiple F0 candidates and merits for each frame, routines for spectral F0 
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tracking, and a routine for overall tracking.   Another routine determines individual pitch 

period markers, given the pitch track.     

 Figure 3.8 depicts in form of a flowchart the order of processing carried out with 

respect to the MATLAB routines used in the algorithm. The rectangular boxes depict the 

different MATLAB routines used in the development of the algorithm.  The arrowheads 

depict the direction of the data passage. The different outputs of the signal processing 

blocks are depicted within parentheses. Each output has been named and its functionality 

described alongside. Note that the ** notation depicts that passing of defined or estimated 

estimates along with the signals mentioned. 
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 Ptch_trk.m:  This main routine is used for pitch tracking of a series of files.   This 

routine uses three “set up” files.   The first setup file, ptch-trk.dat, is the main setup file, 

which contains the names of two other set up files (which here we call list.dat and ptch-

trk.ini) and some other basic information concerning file formats.  “List.dat” contains a 

list of the speech files to be processed.   “Ptch_trk.ini,” described more fully below, 

contains parameter values, which specify the various thresholds and other constants used 

in the tracking. 

 Ptch_trk.ini: This file specifies the user-defined parameters such as the frame 

length (frame_length), the frame space (frame_space), minimum fundamental frequency  

(F0_min), maximum fundamental frequency (F0_max) and the Fast Fourier transform 

length used (fft_length). It also holds parameters such as the filter order (Filter_order) 

used for filtering the original signal (Filter_order_o) and the absolute valued signal 

(Filter_order_a), filter cut offs for filtering the original signal (F_hp_o, F_lp_o) and the 

absolute valued signal (F_hp_a, F_lp_a), where the lower band edge is given by F_hp 

and the upper band edge is given by F_lp; the various thresholds that affect the voicing 

and voiceless decision-making; and finally the weighting proportionality constants used 

for formulation of the transition matrix (k1, k2, k3, k4 and k5), as described in detail 

above.  

 Ptch_tls.m: This routine makes a call to the routines used for signal processing.  It 

is in ptch_tls.m that the two versions of the signal are created, namely the original signal 

(sig_org) and the absolute valued signal (sig_abs).  Ptch_tls.m also makes calls to the 

F0_track.m and the dynamic3.m routines, the functions of which are explained below.   

 F0_track.m:  The inputs to this routine are the two versions of the signal and the 

user-defined parameters.  This routine then computes the pitch candidates for the speech 

signal in processing.   This routine segments the signal to the frame level and makes calls 

to the frame level routines, and also to the spectrographic pitch tracking routines.    The 

main outputs of the routine are the pitch candidate matrix and the associated merit 

matrix.    Other outputs include the smooth spectrographic pitch track and the normalized 

low frequency energy ratio.   
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 spec_f0_org.m: This routine, called from the F0_track.m routine, with an input of 

the entire original signal, computes the smoothed  spectral track (F_peak_org).   In 

addition to F_peak_org, the routine computes and has as output the minimum pitch for 

the utterance (Speaker_min_org), maximum pitch for the utterance  (Speaker_max_org),  

and the standard deviation of the pitch (determined from voiced intervals only) 

(Speaker_std).    

 spec_f0_abs.m: This routine is the same as spec_f0_org.m, except that it operates 

on the absolute value signal and has some  small differences  in  the details of the code.    

 F0_frame.m: The inputs to this routine are a single frame of signal and some user 

defined parameters.   The routine makes calls to crs_corr.m and cmp_rate.m to compute 

pitch candidates and associated merits for each frame. 

 Crs_corr.m: This routine computes the Normalized Cross Correlation sequence 

for each frame as explained above.  The signal is first center-clipped. 

 Cmp_rate.m: The inputs to this routine are the normalized cross-correlation 

signal and some user defined parameters.  The main function of this routine is the peak 

picking of the NCCF signal.   The outputs are the pitch candidates and associated merits 

for a single frame.    

 Dynamic3.m: The primary inputs to this routine are the pitch candidate matrix, 

merit matrix, spectrographic pitch track, and the normalized low frequency energy ratio.   

The routine first compute the local and transition cost matrices, and then it determines the 

lowest cost pitch track.    The output is the final pitch track of the overall algorithm. 

 periods.m, ptch_mrk.m:  used to determine the pitch period markers  for the 

speech signal.   The inputs to the routine are the LP residual   and the computed pitch 

track.   The output is an array of the same length as the original speech signal, which is 

all zero, except for "markers” at identified beginnings of each pitch period. 
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3.2 Summary 

 This chapter details the derivation and the implementation of the pitch-tracking 

algorithm. Example plots depict the functionality of the F0 estimation method employed 

in this thesis.  An attempt has been made to address the problems associated with the 

harmonic structure of normal speech.  Pitch tracking problems resulting from the missing 

fundamental in some normal and telephone speech are discussed and the procedures used 

to correct these problems are presented. The step-by-step explanation of the main 

routines in the thesis work is intended to enable the interested reader to be able to make 

use of these routines.    

 The following chapter presents the results of an experimental validation of the 

pitch tracking routines for a variety of databases.    
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CHAPTER IV 

EXPERIMENTAL VERIFICATION 

 

4.1 Introduction 

 Research on pitch extraction has been conducted for more than 30 years. The result 

of this research is a number of pitch detecting algorithms for a variety of applications.  

Performance comparison of these algorithms is very difficult as each study tends to be 

carried out on a unique data set.  Performance comparison between algorithms increases 

further as the number of methods and algorithms currently available increase. Literature 

has shown that “there exists not one algorithm, that works perfectly for every voice, 

application and environmental condition.” [2]. The problem is further aggravated because 

the evaluations are typically restricted to limited sets of algorithms because of the 

availability of limited data sets.  

 Thus attempts have been made by researchers to provide a “reference,” often 

called the “ground truth,” for a widely available speech corpus so that a performance 

comparison of different algorithms can be made.  This reference then provides a common 

tool to estimate the accuracy of the pitch tracking algorithms.  Providing “ground truth” 

(as we shall refer to it from now on) for a given speech database, is an elaborate process.  

In the next two paragraphs to follow, the process involved in extracting the “ground 

truth” for a given speech corpus is described. 

 For some speech databases, the laryngograph signal, which is more directly 

associated with the rate of vocal cords expansion and closure, has been simultaneously 

recorded with the acoustic signal. The laryngograph signal can thus be used to establish 

the durations of each individual vocal fold cycle for a given speech signal.  Thus, the 

instantaneous fundamental frequency value can be reliably estimated from the 
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laryngograph signal. A stream of such pitch values from an utterance plotted against the 

time at which they occur gives us a pitch contour.   

 In establishing, the ground truth, first the pitch track is computed using the 

laryngograph database. Then these pitch estimates are evaluated manually and corrected 

as needed.  First the microphone signal is compared to the laryngograph signal (Lx).   In 

cases where there appears to be corruption of Lx (acoustic signal shows voicing and Lx 

does not, or vice versa), the pitch estimates are changed accordingly. It is this manually 

checked pitch track that forms the “ground truth.”  The track obtained when the 

algorithm is run over original speech corpus (with no manual corrections) forms the “test 

data.”  Different types of errors are estimated when the “test data” is compare to the  

“ground truth,” as discussed in more detail below. 

 Both qualitative and quantitative measures can be used to evaluate pitch detection 

algorithms.  Many of the existing algorithms give fewer errors with short signals such as 

words, consonants or small sentences spoken for duration of few milliseconds. Usually, 

pitch tracking performance is found to degrade as the complexity of the signal increases. 

To be more specific, many pitch trackers work well with short CVC syllables and 

isolated words but when conversational speech is involved, the errors reported are higher. 

Sometimes the errors reported are also found to increase or decrease for certain speaker 

conditions, such as accent, tonal quality, microphone quality used for recording, 

background noise, etc. The same can be said about the degradation of the performance of 

the algorithm when telephone speech is involved. Telephone speech usually lacks the 

fundamental, makeing it extremely difficult to correctly track the pitch. 

 Keeping this in mind, the pitch detection algorithm reported in this thesis has been 

tested over a wide range of databases. These include CVCs, isolated words and sentences 

spoken by a large variety of speakers (male, female and child speakers) over a range of 

speaker and signal conditions. An attempt has been made to optimize the algorithm to 

function reliably for a variety of conditions. 
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4.2 Brief Description of the Test Database 

 The overall robustness and accuracy of this algorithm was tested using four 

databases. The databases used for testing are VOWEL-CVC, TIMIT-NITIMIT, 

MOCHA, KEELE studio and KEELE telephone databases. In the next few paragraphs, a 

brief description about each database is given. 

 VOWEL-CVC is a database collected by the Speech Communication Lab in the 

Electrical and Computer Engineering Department at Old Dominion University. The 

CVC(s) are the consonant-vowel-consonant such as bag (e.g., “b” is a consonant, “a” is a 

vowel, “g” is a consonant) while the VOWEL(s) are the English vowel sounds as “a,” 

“e,” “i,” “o,” “u”. The database employed for testing the algorithm consists of 46 

consonant-vowel-consonants and 46 vowels spoken by different child, female and male 

speakers chosen at random. 

 The TIMIT-NTIMIT databases employed for testing consist of 10 male and 10 

female speakers each having spoken 10 sentences, giving a total of 200 test sentences. 

The sentences average about 2 seconds in length. The TIMIT sentences are the studio 

quality signals recorded under low background noise. The NTIMIT are the telephone 

quality signals recorded when the speaker’s voice has been transmitted over noisy 

telephone lines and hence undergo signal degradation.   Note that the overall database 

consists of 10 sentences spoken by each of 630 speakers, but only the subset of 20 

speakers was used for this study.   These 20 speakers were the first 20 (alphabetically 

listed) speakers from 8 major dialect regions of the United States, broken down by sex. A 

speaker's dialect region is the geographical area of the U.S. where they lived during their 

childhood years [19,20]. 

 The MOCHA database from the Center for Speech Technology Research at the 

University of Edinburgh consists of studio quality signals and their respective 

laryngograph signals, among the others. The pitch estimates from the laryngograph 

signals form the “ground truth” database for testing the algorithm with the MOCHA 
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database. The MOCHA database consists of 460 sentences each by a male and a female 

speaker.  Speech signals in the database average 300 ms in length [21].  

 Keele University, UK provided the KEELE database, consisting of 10 sentences 

spoken by 5 different male and 5 different female speakers. Speech signals average about 

35 seconds in length.  For algorithm evaluation purposes, the Keele pitch extraction 

reference database was used. This reference database provides a reference pitch obtained 

from a simultaneously recorded layngograph trace as the “ground truth.” This database 

consists of studio quality speech signals sampled at 20KHz [22]. 

 The Spoken Language Systems Group at the Laboratory of Computer Science at 

the Massachusetts Institute of Technology, Cambridge, MA, provided the telephone 

version of the KEELE studio database. This database consists of telephone quality speech 

signals, formed by transmitting the studio quality speech signals through noisy telephone 

and re-sampling at 8KHz.  

 

4.3 Error Measures 

 In the following paragraphs we first define and then discuss the different error 

measures involved in performance evaluation of the algorithm [23,24] presented in this 

thesis.  

 In all, the performance of the algorithm is based on the following types of error 

measures: 

 4.3.1. Voiced in reference track called as unvoiced in computed track (Error Type 
I). 

 4.3.2. Unvoiced in reference track called as voiced in computed track (Error Type 
II). 

 4.3.3. Overall big errors (Error Type III). 

 4.3.4. Mean of the errors between the reference and computed track (Error Type 
IV).  
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 4.3.5. Standard deviation of the errors between reference and computed track 
(Error Type V). 

 4.3.6 Gross errors (Error Type VI). 

 In equations that follow, the following notations are used. 

Fx             =  The reference F0 track. 

Fe          =  The estimated or computed F0 track. 

length( )  =  The length of the reference F0 track. Fx

length( ) = The length of the estimated F0 track. Fe

 For the following notations, all the non-zero pitch values in the reference track are 

denoted by logic 1 and the zero values in the F0 tracks are denoted by logic 0. 

length(  ≠ ) = The length of non-zero reference F0 track.  Fx 0

length(  ≠  ) =  The length of the non-zero estimated track.      Fe 0

length(  0≡ )   = The length  of zero reference F0 track. Fx

length(  ≡ )   = The length of  zero estimated F0 track. Fe 0

 An explanation of each of the error types mentioned above is provided in sections 

4.3.1 onwards: 

 

4.3.1 Error Type I 

 When Fx  is non-zero while  is zero, then a voiced regions is incorrectly 

classified as unvoiced by the pitch tracking algorithm gives rise to the voiced-unvoiced 

error. The percent of this type error is determined by summing over all frames such that 

such that   Fe ≡  and Fx 

Fe

0 0≠ , and dividing by the number of frames for which Fx 

, as given below. Then the voiced to unvoiced error is given by: 0≠
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 Voiced_unvoiced_err = 
( )

( )0 ≠Fx  length
0 ≡  Fe and 0 ≠Fx  length

            (4.1) 

 

 

Non-zero pitch values 

in the reference signal. 

Corresponding zero 

pitch values in the 

estimated signal 

 

 

Figure 4.1: Illustration where the reference contour contains non-zero pitch values 

while the estimated contour contains zero pitch values (voiced to unvoiced errors). 

 

4.3.2 Error Type II 

 When Fx is zero while is non-zero, an unvoiced region is incorrectly classified 

as voiced by the pitch tracking algorithm gives rise to the voiced-unvoiced error. The 

percent of this type error is determined by summing over all frames such that Fe ≠  

Fe

0
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and Fx ≡ , and dividing by the number of frames for which Fx , as given 

below.  

0 0≡

Then the voiced to unvoiced error is given by: 

Voiced_unvoiced_err = ( )
( )0 Fx  

0   Fe and 0 Fx  
≡

≠≡
length

length                                (4.2) 

 

  

 

 

 

 

         
Zero pitch values in the range specified by the arrows in the 

reference contour 
 

Figure 4.2:  Illustration where the reference contour contains zero pitch values 

while the estimated contour contains non-zero pitch values (unvoiced to voiced 

errors). 

Non-zero pitch values in the range specified by the arrows in the 

estimated contour 
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Thus the overall voicing decision errors which also forms a common grade for PDA 

evaluation among researchers is given by the following equation: 

Voicing errors  

= Voiced_unvoiced_err + Unvoiced_voiced_err                                  (4.3) 

            

 

4.3.3 Error Type III 

Calculation Of Big Error 

 When, the reference F0 track is non-zero and the estimated F0 track is also non-

zero then  (i.e.,   and  Fx 0≠ Fe 0≠  respectively), then the speech in that frame is 

classified as “clearly voiced.”  

 In such conditions, the ratio 
Fx

FeFx −  is first tested against a certain threshold. If 

the conditions, as described below, are met then the algorithm is considered to have made 

a “Big Error.” 

 The ratio is tested against thresholds of the order 0.2 and –0.2 according to the 

following dictations: 

 If the ratio 
Fx

FeFx −   0.2, then the pitch tracking algorithm is considered to 

have made a gross error in estimating the fundamental frequency of more than 20% of the 

reference  and the error categorized as pitch halving. These types of errors are 

categorized as gross_low_err and are used as defined later. 

≥

Fx

 In an otherwise case i.e. if the ratio 
Fx

FeFx −  ≤  0.2, then the pitch tracking 

algorithm is considered to have made a gross error in estimating the fundamental 

frequency of less than 20% of the reference  and the error categorized as pitch Fx
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doubling. These types of errors are categorized as gross_high_err and are used as defined 

later. 

 Otherwise the pitch-tracking algorithm is assumed to have estimated the 

fundamental frequency with an acceptable accuracy.  

 The +/- 20% threshold of acceptability is chosen because all pitch-tracking 

algorithms are expected to provide a pitch estimate within this range with due 

consideration of time quantisation errors and the finite frequency resolution of the 

analysis technique [10.].  

 All the frames for which the computed track does not satisfy the above mentioned 

condition is noted and returned back as “Big error.”  

 Hence the overall big errors are calculated based on the following formula: 

Overall Big Errors = Big Errors + Voicing Errors.                                          (4.4) 

 

4.3.4 Error Type IV 

Calculation of Mean of the Errors 

 The mean of the errors is defined as the mean of the amount by which the 

computed track differs from the reference track for all the clearly voiced frames. i.e.  for 

all cases where 

Voiced_length = length (   Fx 0≠  and  Fe 0≠ ) 

 

MEAN = ∑             (4.5) 
gthVoiced_len

-(Fe
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 Since the mean is computed using Fe – Fx, whenever the difference is a negative 

value it indicates that the computed track has a lower pitch value as compared to the pitch 

value of the reference track. 

 

4.3.5 Error Type V 

Calculation Of Standard Deviation Of The Errors 

 The standard deviation of the errors if defined as the standard deviation for all the 

frames in which the computed pitch value differs from reference pitch value when both 

the tracks are voiced. 

 Hence for every clearly voiced frame:  

Voiced_length = length (   Fx 0≠  and  Fe 0≠ ) 

 

STANDARD DEVIATION = ∑ gthVoiced_len
MEAN) - Fx)-((Fe 2

        (4.6) 

  

 A large standard deviation means that there is a large difference between the pitch 

values of the estimated pitch and reference pitch values. 

 These errors are then estimated for all the utterances in the database for each 

speaker. The sum of the individual durations of such erroneous regions is expressed as a 

percentage of the total duration of the unvoiced and voiced speech respectively for the 

respective databases.  
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4.3.6 Error Type VI 

Calculation Of Gross Errors 

 The overall gross errors are categorized for deeper probe into the algorithms 

functioning as: 

 (a) Overall gross (a) error for voiced portion, with weighting. 

 (b) Overall gross (b) error in voiced reference, without weighting. 

 The overall gross (a) error for the voiced portion is defined as the sum of the 

voiced_unvoiced_err, gross_low_err and gross_high_err (all as defined above), but 

normalized by a weighting factor equal to the number of frames where the reference pitch 

track is unvoiced. This error takes into account only the regions where the reference track 

is voiced and therefore averages (over a database) are computed using weighting factors 

proportional to the number of voiced frames in each reference sentence. 

 The gross error (b) is computed identically to gross error (a), except averages are 

computed without weighting factors proportional to lengths of voiced portions. In 

experiments, it was found that gross errors results were very similar with or without the 

weighting. Results are reported for gross error (b), without weighting. 

 

4.4 Results and Discussion 

 The algorithm described in this thesis is used to compute a pitch contour for each 

utterance in each of the test databases mentioned above.  

 Considerable initial testing was done to check for the presence of gross errors such 

as pitch halving and pitch doubling for a variety of speakers and speaker conditions.  This 

testing was done primarily with the shorter signals in the VOWEL-CVC database as 

these short signals allowed more accurate visual inspection.  Plots of each of the 

following were first examined for each test utterance:  
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1. Time-domain signal 

2. Spectrogram  

3. The final pitch contour 

 When these plots were manually inspected for each frame of the signal, as 

expected, the algorithm provided no gross errors as pitch halving or pitch doubling for all 

the cases tested. It was found that the algorithm tracked pitch even in some weakly 

voiced regions. The algorithm resulted in no gross errors for varied signal and speaker 

conditions, at least for the 46 signals checked   (Note that these type inspections did 

indicate many errors in earlier versions of the algorithm, while it was under 

development.).  The signals used for the final testing with the CVC –VOWEL database 

were those utterances for which pitch tracking had appeared to be most difficult with 

earlier versions of the algorithm.  
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Figure 4.3:  Illustration of the final pitch contour estimation by the algorithm to 

represent the lack of gross error estimations as pitch halving and pitch doubling. 

The time domain acoustic signal is plotted in the first panel, the second panel 

shows the final pitch contour overlaid on the spectrogram of the signal. 

 

 The second round of testing was conducted with the TIMIT-NTIMIT databases. It 

has been shown that the performance of any pitch tracker degrades for telephone quality 

speech. Based on this notion, it was decided to test the algorithm over the telephone 

signals and compare it with the performance of the algorithm for the studio quality 

version of the same utterances.  This was done since no  “ground truth” was available for 

this data, but it was felt that the pitch track for the studio quality versions of the sentences 

would provide a reasonable ground truth, at least with respect to the telephone versions 

of the sentences.   The algorithm was first tested with the 200 TIMIT signals and the 

pitch contour kept for the “ground truth.” Then the corresponding 200 telephonic 

sentences (NTIMIT) were tested with the algorithm and the error results noted. 

 The third round of testing was done with the MOCHA database. This database, as 

mentioned earlier, provides the microphone signal and laryngograph signals (plus other 
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signals not used in this work). As mentioned previously, the laryngograph signal closely 

follows the vocal cord activity; hence, the laryngograph signals are processed by the 

pitch-tracking algorithm to determine a resultant pitch contour, which can be considered 

as the “ground truth” (LARYN).  Note that this ground truth was not “manually altered” 

as would have been the case for an available reference database. The pitch track extracted 

from the microphone signal with the algorithm forms the test data. The test data was then 

tested against the “ground truth” for the error calculations. 

 The fourth round of testing was done with the KEELE database for both the studio 

(K_std) and the telephone database (K_tele). This database contains the ‘ground truth’ 

(Cntrl_1) and the microphone signal. With this ground truth it was found that the number 

of frames in the ground truth and the test track did not exactly match, despite using the 

same frame spacing as was reported for the ground truth. To match the number of frames 

as determined by our algorithm to the number of frames in the ground truth, a small 

number of unvoiced frames were inserted in the beginning and/or end of the ground truth 

signal.    Note that this number of frames was typically a very small number such as 2 or 

3 frames, with tracks typically over 3000 frames in length.   After this the errors were 

computed and tabulated, for the various error types mentioned above.     

 The fifth round of testing was done with modified “ground truth” in the KEELE 

database issue. Although the Keele database includes what should be a very reliable 

control (which we call Cntrl_1), inspection of this track showed several instances of what 

appeared to be pitch halving.   This type of error is considered as a gross error, and to 

avoid this type of error, a second “ground truth,” called Cntrl_2 was formed. Manual 

frame level inspection showed that any values below 70Hz for the male speakers and 

110Hz for the female speakers appeared to be pitch-halving errors. Hence a threshold 

was set and all values below the 70Hz range for the male speakers and 110Hz range for 

the female speakers were set to zero (unvoiced). This formed the Cntrl_2 as described 

above. These thresholds were determined as averages based on all the speakers. 
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Figure 4.4:  The upper panel (Cntrl_1) exhibits apparent pitch having for a number of 

voiced frames.   Using a threshold, to reduce these low pitch values to unvoiced, 

(Cntrl_2, in the lower panel) eliminates most of these large jumps in pitch.     This is a 

typical example for a female speaker. 

 

 Tables of errors for all the databases mentioned above are presented here.  The 

errors are reported as percentages. The errors of most interest are the BIG ERRORS, 

which gives a single overall figure of merit for the performance of the algorithm with 

respect to large errors of any type.  The error of next-most most interest is the GROSS 

VOICED ERRORS, which indicates the performance of the algorithm in the voiced 

sections of speech. 

 Each of these databases was tested with three different sets of parameters (listed in 

Table 4.5). Each parameter setting was intended to minimize one of the error types 

mentioned above. The tests are for different parameter settings are referred to as 

Experiments I, II and III. 

 The results for Table 4.1 were obtained with parameter settings (see Table 4.5) that 

were selected to minimize the big errors (Experiment I in the parameter table).  
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Type of 

data 

Type of 

control 

V_uv_err Uv_v_err Big 

errors 

Mean STD Gross_high Gross_low 

K_std Cntrl_1  11.20           7.29 10.16 -0.23 11.12 1.54 0.21 

         

K_std Cntrl_2  10.00           8.13       9.45      -1.13  7.54      0.61        0.22 

         

K_tele Cntrl_1  22.73           5.73       15.31     -0.02  11.50    1.69        0.38 

         

K_tele Cntrl_2  21.41 6.19 14.37 -0.63 8.95 1.18 0.39 

         

MOCHA LARYN 4.92 6.18 6.17 0.42 7.43 0.71 0.33 

         

NTIMIT TIMIT 18.37 4.22 12.06 -1.11 6.15 0.36 0.61 

 

TABLE 4.1: Pitch tracking error summary for several databases mentioned above to 

minimize BIG errors.  The results are obtained by a simple (non-weighted) average of 

all the utterances in each database.  Parameters settings were adjusted to attempt to 

minimize the BIG errors (Experiment I).     

 

 The results in Table 4.2 were obtained with parameter settings (see Table 4.5) that 

were selected to minimize the gross voiced errors (Experiment II). 
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Type of 

data 

Type of 

control 

V_uv_err Uv_v_err Big 

errors 

Mean STD Gross_

high 

Gross_

low 

Gross 

voiced 

error 

          

K_std Cntrl_1 0.08 87.41 45.08 0.92 14.88 2.92 0.52 3.52 

          

K_std Cntrl_2 0.07 87.73 45.23 -0.95 9.09 0.79 0.54 1.4 

          

K_tele Cntrl_1 0.10 95.63 50.46 1.11 17.35 4.46 1.53 6.09 

          

K_tele Cntrl_2 0.09 95.75 50.60 -0.78 12.49 2.37 1.58 4.04 

          

MOCHA laryn 5.51 6.01 6.23 0.20 7.26 0.55 0.32 6.38 

          

NTIMIT TIMIT 1.08 95.29 24.35 -

11.72 

19.47 3.07 15.10 19.25 

 

TABLE 4.2:  Pitch tracking error summary for several databases to minimize GROSS 

error.  The results are obtained by a simple (non-weighted) average of all the 

utterances in each database.   Parameters settings were adjusted to attempt to minimize 

the Gross voiced errors (Experiment II).    
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Type of 

data 

Type of 

control 
V_uv_err Uv_v_err Overall 

Big 

errors 

Mean STD Gross 

high 

Gross 

low 

K_std Cntrl_1 12.56 7.96 11.25 0.09 11.19 1.69 0.15 

         

K_std Cntrl_2 11.48 8.87 10.58 -0.93 7.09 0.68 0.16 

         

K_tele Cntrl_1 27.47 6.25 18.60 2.47 14.73 3.39 0.23 

         

K_tele Cntrl_2 26.22 6.69 17.63 1.82 12.26 2.91 0.23 

         

MOCHA LARYN 4.06 4.50 4.65 0.09 6.18 0.42 0.24 

         

NTIMIT TIMIT 14.36 4.69 10.02 0.37 5.39 0.53 0.13 

 

TABLE 4.3:  Pitch tracking error summary for several databases mentioned above to 

minimize overall BIG errors.  The results are obtained by a simple (non-weighted) 

average of all the utterances in each database.   Parameters settings were adjusted, 

with the aid of visual inspection, to attempt to minimize the overall big errors 

(Experiment III).    

 

 Summary of the different results obtained from different parameter settings are 

depicted below for the Keele database with different controls.  
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Type of 

data 

Type of 

control 

Big errors 

(Optimized)

Gross voiced  errors 

(Optimized)  

K_std Cntrl_1 10.16 3.48 

    

K_std Cntrl_2 9.45 1.35 

    

K_tele Cntrl_1 15.31 6.19 

    

K_tele Cntrl_2 14.37 4.09 

    

Table 4.4:  Summary of BIG errors and Gross voiced errors for the Keele database 

with different controls.   Note that different parameters settings were used to 

minimize each type of error.    

 

 The different sets of parameters used for carrying out the different experiments 

mentioned above are listed respectively in a separate table, Table 4.5. Note that the 

software used a single file to control all these parameters. 

 

 

 

 

 

 

Parameter Experiment    I Experiment II Experiment III 
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Frame_length 50 35 35 

F0_min 60 60 60 

F0_max 450 450 500 

Fft_length 1024 512 512 

Filter_order_o 150 150 125 

F_hp_o 25 25 150 

F_lp_o 900 900 900 

Filter_order_a 150 150 125 

F_hp_a 50 15 100 

F_lp_a 900 900 900 

Merit_thresh1 0.4 0.3 0.3 

Merit_thresh3 0.96 0.7 0.96 

Merit_boost 0.1 0.1 0.0 

Merit_thresh_final 0.1 0.40 0.40 

Threshold1 0.1 0.5 0.5 

Merit_pivot 0.45 0.55 0.55 

K1 2.0 17.0 17.0 

K2 5.0 1.0 0.9 

K3 5.0 1.0 1.5 

K4 5.0 0.1 0.1 

K5 1.0 1.0 1.0 

Merit delta 0.1 0.1 0.1 

 Clip ratio 0.00 0.0 0.25 

Table 4.5: Parameter values used for Experiments. 
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4.4.1 Comparison with results from the literature survey 

 A thorough study of the available literature revealed that the MIT speech 

laboratory, for the DLFT algorithm, reported the best errors analysis. The study was 

reported using the KEELE database and hence provides a common ground for 

performance comparison of this algorithm. The literatures also provided the error 

measures for another pitch tracker XWAVES and therefore the XWAVES results are 

included in this thesis to compare the performance of this thesis work with that 

commercial tracker.   A complete evaluation for the studio and the telephone speech 

database, as given above, is compared with comparable results from the XWAVES and 

MIT pitch trackers. 

 The following table compares the performance of the above-mentioned three 

algorithms for the KEELE database (both studio and telephone). The error measures 

reported are the Gross Voiced Errors (as defined above), the voiced (in reference) called 

unvoiced (in computed track)  (V_uv_err), and the mean and the standard deviation of the 

pitch error for the voiced regions (when both reference and computed track are 

considered voiced).  

 The YAAPT algorithm outperforms XWAVES for all error measures.  The 

YAAPT algorithm also has better performance in regard to the overall error as compared 

to the DLFT algorithm by the MIT speech group in studio quality speech but the 

performance of the DLFT is better than YAAPT for the telephone speech.  
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Type  GER 

(%) 

V_uv_err 

(%) 

Mean 

(Hz) 

Std (Hz) Overall_err 

(%) 

Xwaves 1.74 6.63 3.81 15.52 8.37 

DLFT 

 

4.25 

 

-- 

 

4.61 15.58 4.25 

 

 

 

Studio 

 

 

 

YAAPT 

 

3.40 0.08 0.92 14.88 3.48 

 

Xwaves 2.56 20.84 6.12 25.10 23.41 

 

DLFT 4.34  --- 4.49 14.35 4.34 

 

 

Telephone 

YAAPT 5.99 0.10 1.11 17.35 6.19 

 

 

TABLE 4.6:  Summary of performance of the available algorithms. 

 

4.5 Summary  

 In this chapter the various errors and the techniques used for the error analysis 

were reported. A description of the possible values for the parameters that have been 

used for obtaining the errors have also been depicted in a table.  
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 In the next chapter a discussion of the possible future applications of this algorithm 

and related routines is discussed in detail. The next chapter also provides a preview of the 

likely enhancements that are likely to enhance the performance of this algorithm further. 
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CHAPTER V 

CONCLUSIONS AND FUTURE IMPROVEMENTS 

 

5.1 Introduction 

 In this thesis, Yet Another Algorithm for Pitch Tracking (YAAPT) was developed, 

described and tested.   The base frame level algorithm is based on the Normalized Cross 

Correlation function as discussed in [2.].    YAAPT can be used to extract fundamental 

frequency from speech signals with high accuracy.  YAAPT can be used with other 

speech processing algorithms and possibly be used to make improvements in end point 

detection, or perhaps be used for pitch synchronous spectral envelope feature extraction 

for vowel classification. This chapter discusses the achievements of the work and 

outlines suggestions for future research. 

 

5.2 Achievements and Future Work 

 The following conclusions can be made based on the results of the experiments 

conducted. The research showed that the algorithm did not produce many big errors such 

as pitch halving or pitch doubling. The various tests carried out on several databases 

showed that the error rates obtained were very low. The algorithm proved to be robust 

and accurate for a variety of speaker and signal conditions as well. 

 The use of the non-linear absolute value operation on the signal showed that in the 

cases where the fundamental is weak or missing (such as for telephone signals), the 

fundamental could be restored thus providing for better F0 tracking. The other non-linear 

operation of center clipping also helped to improve the signal condition by reducing the 

harmonics while still retaining the fundamental information. The use of the spectral 

information for making a better voiced-unvoiced decision-making helped improve the 

peak search algorithm as discussed in Chapter III. The spectrogram was also used to 
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provide a skeleton pitch contour to guide the peak search algorithm for picking the 

correct F0 candidate.  

 Speech signals sometimes contain peaks of comparable magnitude at the correct 

F0 period and also at double or half the correct lag value or simple at a different correct 

lag value thus giving rise to small and large errors. These type problems motivated the 

multi-pass peak searching approach.   

 The performance of the algorithm can be further improved by designing a robust 

pitch- marking algorithm, i.e., the zero-cross detection algorithm based on the final F0 

estimation. An attempt has been made in this research work to design an algorithm that 

can detect pitch period markers from a time domain speech signal, with the goal of 

finding an even more precise overall pitch track.   The algorithm implemented is based 

on intelligent peak picking of the LPC residual signal, using the information that the 

approximate spacing between peaks should equal the already determined pitch period.  

Although the method developed shows promise, further work is needed to improve 

reliability.    Ultimately this technique could be used to help estimate such important 

quantities as pitch jitter. 

 The different parameter settings controls are available for the user. This enables 

the user to adjust the algorithm for different applications tasks. Some applications require 

only an estimate of the F0 information while others still require highly accurate F0 

information. The different routines developed can be easily integrated with other speech 

signal processing specific tasks as well.   

 In summary, a very accurate pitch-tracking algorithm has been developed.   The 

algorithm uses multiple estimates of the pitch, and associated merits, along with dynamic 

programming to obtain a final result. 
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APPENDIX. 

Variable Names and Help File 

1. Variable Names 

1. Threshold1 = the threshold value used to determine the voiced regions from the 

unvoiced regions. Whenever the Normalized Low Frequency Energy Ration 

falls below this threshold value, the region is termed as unvoiced; if it falls 

above the value, it is termed as voiced region. 

2. F0_min = the minimum F0 value being considered for estimation of F0 values. 

It is set common for all speaker conditions. 

3. F0_max  = the maximum F0 value being considered for estimation of F0 values. 

It is set common for all speaker conditions. 

4. Merit_pivot = Whenever there occurs a region which probably maybe voiced, a 

spectral F0 candidate is considered as the viable case and a merit value equal to 

Merit_pivot associated with it. 

 

2. Help File 

2.1 Ptch_trk.hlp 

creation date:  January 2, 2002 

revison date:  April 6, 2002 

 

Ptch_trk.m is the main routine used to compute the pitch track of a series of acoustic 

wave files. 

The input signals are files of the form *.wav, each of which should be an acoustic file in 

either NIST or RIFF format. 
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The outputs are text pitch files, one for each waveform file.  Note that the output files are 

placed in the same directory as the waveform files are located in. 

 

The setup files needed to run the program are: 

ptch_trk.dat %Contains overall information 

ptch_trk.ini %Some overall parameters for using the  program 

list.dat     %List of files to process 

Note that the names of the second two of these setup files can easily be changed, by 

simply changing the names in the ptch_trk.dat file. 

Sample files 

// Sample setup file for pitch_trk 

//   Creation date:    August 2, 2001 

FILE_ID:PARAMETER_SPEC //  FILE_ID must be on the first line 

LST_FILE:bth_wav.dat   //   list of sentences 

PAR_SPEC_FILE:ptch_trk.ini //setup file  for  pitch routines 

FILE_TYPE:TYPEA1          //TYPEA1, TYPEB1, or HTK 

 

2.2 Ptch_evl.hlp 

creation date: April 6, 2002 

revison date:  April 6, 2002 

 

Ptch_evl.m is the main routine used to evaluate the accuracy of the ptch_trk program. 

The ptch_trk program must have first been run, and control pitch tracks must also be 

located in same directories as pitch tracks. 

The input signals are files of the form *.wav, each of which should be an acoustic file in 

either NIST or RIFF format. 
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The outputs are text pitch files, one for each waveform file.  Note that the output files are 

placed in the same directory as the waveform files are located in. 

 

The setup files needed to run the program are: 

ptch_evl.dat      %  contains overal information 

list.dat          %  list of files to process 

Note that the names of the second of these setup files  can easily be changed,  by simply 

changing the name in the ptch_evl.dat  file. 

Sample files 

//Setup file for ptch_evl.m 

//NOTE: Except the FILE_ID the rest of the files can be mentioned without any specific 

order. 

FILE_ID: PARAMETER_SPEC // FILE_ID must be on the first line 

LST_FILE: std_ref.dat   // list of pitch tracks 

FILE_TYPE: TYPEA1       // TYPEA1, TYPEB1, or HTK 
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m 

Data_org:   
original 
signal; ** 

            THE FINAL PITCH TRACK 

Spec_org_t
rk := pitch 
track from 
original 
signal. ** 

Spec_org
_trk = 
pitch 
track 
from 
original 
signal. ** 

Pitch_array: F0 candidates for 
entire utterence. ; Merit_array: 
merit candidates for entire 
utterence. : NFLER:low frequency 
energy ratio; Est_track = estimated 
track from spectrogram 
processings from original and 
absolute valued. ** 

Frame_Rate = pitch 

Frame_Rate = 
pitch candidates 
per frame. Crs_corr_sig: normalized cross correlated signal 

**

Sig_part ; ** 
 

Sig_part = signal segmented into 
frames; 
Other defined/estimated 

Data_abs:   
absolute valued 
signal ; ** 

Fs: sampling frequency. LenData: no. of 
data samples. Data_org : original signal. 
Data abs: absolute valued signal. **

Fs = sampling frequency. 
Data = the signal.

Dynamic.m 

Cmp_rate.

Crs_corr.m 

F0_frame.m

Spec_F0_abs.m Spec_F0_org.m 

F0_track.
m

Toolbox.m

Read_audio.m 

Figure 3.8: Depiction of overall pitch tracking  algorithm in form of  a flowchart. 
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